Empirical likelihood inference for linear transformation models
نویسندگان
چکیده
منابع مشابه
Empirical likelihood method for linear transformation models
Empirical likelihood inferential procedure is proposed for right censored survival data under linear transformation models, which include the commonly used proportional hazards model as a special case. A log-empirical likelihood ratio test statistic for the regression coefficients is developed. We show that the proposed logempirical likelihood ratio test statistic converges to a standard chi-sq...
متن کاملSemiparametric inference for transformation models via empirical likelihood
AMS 2000 subject classifications: 62N02 62G20 Keywords: Kaplan–Meier estimator Martingale Proportional hazards model Proportional odds model Right censoring U-statistic a b s t r a c t Recent advances in the transformation model have made it possible to use this model for analyzing a variety of censored survival data. For inference on the regression parameters, there are semiparametric procedur...
متن کاملEmpirical Likelihood for Partially Linear Models
In this paper, we consider the application of the empirical likelihood method to partially linear model. Unlike the usual cases, we first propose an approximation to the residual of the model to deal with the nonparametric part so that Owen's (1990) empirical likelihood approach can be applied. Then, under quite general conditions, we prove that the empirical log-likelihood ratio statistic is a...
متن کاملEmpirical likelihood for heteroscedastic partially linear models
AMS 2000 subject classifications: 62F35 62G20 Keywords: Double robustness Empirical likelihood Heteroscedasticity Kernel estimation Partially linear model Semiparametric efficiency a b s t r a c t We make empirical-likelihood-based inference for the parameters in heteroscedastic partially linear models. Unlike the existing empirical likelihood procedures for heteroscedastic partially linear mod...
متن کاملTwo-step generalised empirical likelihood inference for semiparametric models
This paper shows how generalised empirical likelihood can be used to obtain valid asymptotic inference for the nite dimensional component of semiparametric models de ned by a set of moment conditions. The results of the paper are illustrated using two well-known semiparametric regression models: the partially linear single index model and the linear transformation model with random censoring.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 2006
ISSN: 0047-259X
DOI: 10.1016/j.jmva.2005.09.007